
Ada is now entering its third standard
incarnation, currently known as Ada

2005. Its earlier incarnations were Ada
83, which was designed in the late 1970s
and early 1980s by a team led by Jean
Ichbiah, and Ada 95, which was designed
in the early 1990s by a team led by this
author. In contrast to the earlier incarna-
tions, Ada 2005 was designed by a large-
ly volunteer committee, led by Pascal
Leroy. The only member of the commit-
tee actually on the payroll was Randy
Brukardt, who was supported by
AdaEurope and the Ada Resource
Association in his official role as editor
of the new standard.

The lack of a full-time design team to
drive and shape the design process creat-
ed misgivings among some members of
the committee who felt it could impede
the process. The design-by-committee
process has a well-deserved reputation
for producing awkward and unpleasant
collections of disjointed compromises.
The question was whether the Ada 2005
process could sidestep these pitfalls.

With a full-time design team and a
clear team leader, the Ada 95 revision
benefited from a cohesive vision that
kept the design from becoming a scat-
tered combination of ideas. With a vol-
unteer committee, there was a danger
that the need to create consensus without
the hierarchy present in a design team
would result in inconsistencies, that each
committee member would be mollified
by being given their own pet feature, and
the language would descend into a balka-
nized conglomerate of sublanguages.

Ada 2005 seems to have escaped the
notorious design-by-committee prob-
lems. The proposed changes seem to
have brought the language into a state
where it is, if anything, more integrated
and more consistent. How was this
accomplished? In retrospect, the key fac-
tor in achieving this desired goal has

been a strong, shared, language-design
philosophy driving design decisions. This
kind of shared philosophy might not
have been possible in earlier Ada stan-
dardization activities, as the language and
the community of users were still rela-
tively new. For the Ada 2005 process, we
had a set of committee members with
many years of experience both as users
and implementors of Ada and a shared
vision of what makes Ada powerful and

productive, namely its unique combina-
tion of safety, flexibility, efficiency, and
its real-time support. Our goal in Ada
2005 was to preserve and enhance these
strengths while reducing any impedi-
ments to productive use.

The two anchors in the shared vision
were safety and efficiency, with safety
given more weight – though never
absolute precedence – when there was a
conflict. Ada’s focus on safety is in
strong contrast with certain other lan-
guages, where the attitude might be
expressed as give programmers very sharp
tools and then get out of their way, although
this latter attitude sounds great for real
programmers. In fact, even the best pro-
grammers make mistakes. Part of the

Ada philosophy is that by appropriate
human engineering, you can produce a language
that is in the end more productive. The design
of the language allows the compiler and
the run-time to catch typical programmer
errors before they become tedious
debugging problems.

To illustrate how this shared philoso-
phy interacted with the Ada 2005 design
process, it is useful to study the evolution
of a particular Ada 2005 feature as it
moved from a perceived language prob-
lem – through the debates over the multi-
ple ways to solve it and finally to the ulti-
mate consensus around one particular
solution.

Solving the Mutual
Dependence Problem
One of the first challenges for the Ada
2005 revision was allowing for mutual
dependence among types that were not all
declared in the same package. As an exam-
ple, one might have a type representing
employees and another representing
departments where a department record
would include a pointer to the employee
who is the manager, and the employee
record would include a pointer to their
department. In Ada 83 and Ada 95, by
using an incomplete type declaration, a
software engineer was able to define such
mutually dependent types, but only if they
were all in the same package. This limita-
tion led to large, unwieldy packages, partic-
ularly in the context of object-oriented
programming.

Although this mutual dependence
problem was one of the first identified, it
was one of the last problems solved during
the revision process. The problem proved
extraordinarily difficult to solve in a way
that satisfied the various criteria inherent in
our shared design philosophy. In the end,
seven different approaches were consid-
ered, six of which were considered viable:

The Ada 2005 Language Design Process

The Ada 2005 language design process was significantly different from that used by Ada 83 and Ada 95 in that it was
based on an essentially volunteer committee rather than a full-time design team. Design-by-committee has a well-deserved rep-
utation as being a sure way to create an awkward and unpleasant collection of disjointed compromises. Nevertheless, the result
of the Ada 2005 process produced a language that is even better integrated and consistent than its predecessors. Producing
this result depended on having a strong, shared, language design philosophy driving the design decisions. This article discuss-
es this language design philosophy, contrasts it with the philosophy behind various other programming languages, and shows
how the philosophy helped to ensure a successful, integrated, and consistent result.

S. Tucker Taft
SofCheck, Inc.

20 CROSSTALK The Journal of Defense Software Engineering August 2006

“In retrospect, the
key factor in achieving

this desired goal
[designing Ada 2005]

has been a shared
language-design

philosophy driving
design decisions.”

August 2006 www.stsc.hill.af.mil 21

1. A new kind of incomplete type called
a separate incomplete type whose comple-
tion is given in a separate library unit,
rather than in the same library unit
that contains the incomplete type
declaration.

2. A variant of the separate incomplete type
called a type stub where the type stub
identifies the particular library unit
where its completion will be found.

3. A new kind of incomplete type decla-
ration that specifies that the comple-
tion will occur in a particular child or
nested package of the package contain-
ing the incomplete type declaration.

4. A new kind of with clause called a with
type clause to specify that a particular
type will exist in a separate package,
without requiring the package itself
to be compiled prior to the referenc-
ing unit.

5. A new kind of compilation unit
called a package abstract to contain
incomplete type declarations that are
to be usable (via a with abstract clause)
as part of a mutual dependence that
crosses package boundaries.

6. A new kind of with clause called a lim-
ited with clause that gives visibility on
an implicitly created limited view of a
second package, where the limited
view contains incomplete versions of
the (non-incomplete) types declared
in the second package; limited with
clauses are allowed to create circular
dependencies between packages.
Although each of these proposals

had its particular merits, only one ulti-
mately emerged as the best when judged
against all of the design criteria. One of
the most important criteria was that the
feature should preserve the ability to
identify all of the inter-compilation unit
dependencies by only looking at the
name and the context clause of a compila-
tion unit (the context clause is the set of
with and use clauses that immediately pre-
cede a compilation unit). The separate type
and type stub proposals lacked this.
Alternative three, allowing a type to be
completed in a child, also lacked an indi-
cation in the context clause that a depen-
dence on the child existed, though it was
given some credit for keeping the unan-
nounced dependence to a unit in the
same package hierarchy.

After eliminating the proposals that
introduced unannounced dependencies,
we were left with the with type, package
abstract, and limited with proposals. The
with type proposal was abandoned because
it did not really solve the whole problem
since it did not provide any visibility on
an access type, and a mutual dependence

between types necessarily involves an
access type. Furthermore, it created a
namespace with holes in it, where visibil-
ity was granted by a with type P.T, on a
single declaration within package P, with-
out providing visibility on the rest of the
visible part of P. This was unprecedent-
ed and was inconsistent with a choice
made in Ada 95 when designing with
clauses that mention child units where
the entire parent package visible part was
included rather than just the named
child. An important criteria in our design
philosophy has been to try to make con-
sistent choices so that the programmer’s
intuition about how the language works
is reinforced as they learn more of the
language rather than being forced to
learn new rules in each corner of the lan-
guage.

The package abstract proposal was
abandoned primarily based on the crite-
ria of simplicity of use and implementa-
tion. Adding a new kind of compilation
unit, a package abstract, would be a sig-
nificant disruption to all existing Ada
tools. Forcing the user to decide which
types of the package to include as
incomplete types in the package abstract
felt somewhat arbitrary, and the decision
might change repeatedly as the system
grew. Although this proposal was aban-
doned, its heritage can be seen in the
simpler-to-use limited with proposal.
Here, the implementation creates the
equivalent of the package abstract
implicitly, creating incomplete type defi-
nitions for all of the types in the original
package, while relieving the user of hav-
ing to perform the potentially error-
prone copy-and-paste process manually.
Furthermore, implementability concerns
were lower because many non-compiler
tools could largely ignore these implicitly
created limited views.

In the end, there was agreement that
the limited with proposal was clearly supe-
rior to the other five alternatives. But the
process of reaching this point was long
and arduous, with many person-months
of effort invested in several of the other
proposals, including relatively detailed
analyses of implementation effort, realis-
tic examples of use, and vigorous
debates of the pros and cons. The fact
that a consensus was eventually reached
depended in a large part on the shared
fundamental design philosophy, both at
the high level, such as simplifying the
work for the user, reducing the need for
arbitrary decisions, and remaining con-
sistent with other analogous choices to
the lower level such as ensuring that
inter-unit dependencies are fully cap-

tured in the name and context clause of
a compilation unit.

Conclusion
Although the mutual dependence problem
was probably the most difficult design
problem we faced, there were many other
problems where a number of alternative
approaches were proposed as possible
solutions. In each case, we debated the
alternatives vigorously, but ultimately a
consensus emerged, shaped by the criteria
provided by our strong, shared design phi-
losophy. Safety, clarity, consistency, ease of
use, and efficiency of implementation
provided strong criteria that allowed us to
select among the competing proposals
with a feeling of satisfaction in the end
that we had chosen a clearly superior
approach rather than just settling arbitrar-
ily for one of many equivalent alternatives.

Although it is conventional wisdom
that a design-by-committee generally pro-
duces a set of compromises that leave
everyone somewhat unhappy, the Ada
2005 design process left its design com-
mittee with an unusual level of satisfac-
tion and sense of accomplishment. It
seems clear that this outcome was largely
a result of the long history behind the
committee. This history enabled us to
debate vigorously, but we all feel very
good about the final result. We had been
able to tie our decisions to criteria that we
all shared and which we agreed were the
key to the unique safety and productivity
of the Ada language.u

About the Author

S. Tucker Taft is the
founder of SofCheck,
Inc., which develops
tools for automating
software quality im-
provement. From 1990

to 1995, Taft served as the lead designer
of the Ada 95 programming language.
In 2000/2001, he led the development
of the J2EE-based <Mass.gov> portal
for the Commonwealth of Mass-
achusetts. Since 2001, Taft has been a
member of the International Organi-
zation for Standardization Rapporteur
Group developing Ada 2005.

11 Cypress DR
Burlington, MA 01803
Phone: (781) 856-3344
Fax: (781) 750-8064
E-mail: tucker.taft@sofcheck.com

The Ada 2005 Language Design Process

